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A hybrid gauge transformation of the Hamiltonian for a 
coupled hydrogen atom-field system 
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Physics Department, University of Essex, Colchester CO4 3SQ, UK 

Received 14 March 1989 

Abstract. A gauge transformation of the minimal-coupling Hamiltonian for a non-rela- 
tivistic hydrogen atom is induced by a generating function that rescales the charges and 
their positions. The result is consistent with Maxwell’s equations and the Lorentz force 
formula, and contains the Power-Zienau- Woolley Hamiltonian as a special case. The 
dipole approximation simplifies the Hamiltonian, giving a mixing of p . A  and q * E  
interactions. 

The Hamiltonian of a bound system incorporating the charges as a source of the 
quantised electromagnetic field has been referred to as the Power-Zienau- Woolley 
(PZW) Hamiltonian (Power and Zienau 1959, Woolley 1971). Here, the sources are 
the electric and magnetic polarisation vectors, and the coupling occurs via the displace- 
ment D and the magnetic flux density B, rather than the potentials. The gauge can 
be arbitrary (Babiker and Loudon 1983), and this generalisation of the original dipole 
approximation theory to include all the higher-order multipoles, in closed form, is 
widely applied in quantum optics (Healy 1977a, b, Babiker et a1 1973, 1974, Woolley 
1975). The theory has been reviewed by Power and Thirunamachandran (1978). 

The minimal-coupling Hamiltonian in arbitrary ( a )  gauge of a hydrogen atom 
interacting with an electromagnetic field is 

I 1 
2m 

Hg/n =- ( p +  e A ) 2 + i  d 3 r ( ~ , ’ n 2 + p ; ’ B 2 ) .  

The conjugate momenta are 

p = m q - e A ( q )  

l l ( r ) =  -EOE(r ) .  

Here, q is the position of - e  with respect to +e. The mass of the electron is m, while 
the proton is assumed to be massive. The charge and current densities are respectively 

The dynamical variables are q-numbers at the Hamiltonian level, obeying equal time 
commutators 

[qii ~ j l  =ihsij (6) 
[Ai( r ) ,  llj( r ’ ) ]  = ihs,S( r - r ’ ) .  (7) 
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A gauge transformation is equivalent to 

A + A -VX(r) 

cp + cp +R(r) .  

We introduce a gauge density i (Babiker and Loudon 1983) that is itself a functional 
of the potential A at some general position r’: 

X(r) = d3r’2(r, r‘, {A(r’)}). (8) I 
The gauge density function is written in a shorthand form as i ( r ,  r’). Note that i 
depends onfime only through A. The momenta transform as 

P+P+eVX(q)  

II (r)+II(r) -  C ( r )  

where the vector C( r )  is defined as 

The X-gauge-transformed Hamiltonian is 

i 1 
2m 

Hp’=-(p+eA-eVX)2+t  d3r[&;’(II+ G)2+pL,’B2].  

It must be remembered that apparently identical operators have different significance 
in Hg/n compared with H:’. 

Consider a gauge transformation induced by 

G(r, q )  = -ea dAqS(r-Aq) IP: 
where a, P l  and P2 are arbitrary, dimensionless scalars. If a = p 2  = 1 and P1 = 0 then 
G reduces to the multipolar polarisation PM, and H p )  becomes the PZW Hamiltonian 
(Babiker and Loudon 1983). From (11) the gauge generated by (13) is 

X ( r ) = a  d3r’ [P:dAAj(r ‘ )r j8(r ’ -Ar) ,  

where use has been made of the identity 

a 1’’ dA(1- Ar - V’)S(r’- Ar) = aP2B(r’-P2r) - ap18(r’  -P l r ) .  (16) 
J PI 

Since, by definition, 

8(r’-  Ar) = S ( r ;  - A r , ) S (  r i  - Ar2)8 ( r i  -Ar3) 
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where r l ,  r2 and r3 are the Cartesian components of r, we can write 

[ ~ ~ d h h r j V : 8 ( r ’ - h r ) =  - dh rjVi8(r’-hr). 1:: 

+a Jp:dA J d3r‘h { A , ( r ’ ) r . V ‘ - Z : A i ( r ’ ) r j c :  j 

Therefore 

vx = aP2A(P2r )  - a P I A ( P l r )  -- d3r’O(r’, r )  x B(r’ )  
e ‘I  

where the vector 0 is defined by the equation 

O(r’ ,  r ) = - a e  dhhr8(r‘-r) .  Ip: 
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(17) 

Finally, a substitution of (18) and (13) into (12) gives the transformed Hamiltonian 

1 
2m 

Hj;”’ = - ( p  + eA ( r )  - aeP2A(P2r )  + a e p l A (  PI r )  + d3r’0(  r’, r )  x B( r ’ )  

+ 4 d3r[ &;‘(IT + G)’+ p01B2] I 
with conjugate momenta 

p =  m 4 - e A ( q ) + e a p 2 A ( P 2 q ) - e a p l A ( p , q ) - j  d3r’0(r’, r ) x B ( r ’ )  

I I ( r )  = -EOE(r)  - ea 

If the transformation is canonical then the gauge and transformed momenta obey the 
relationship (Babiker and Loudon 1983) 

It is not difficult to verify (23) for a gauge generated by (13). 
We will now look at the nature of IT. From standard vector analysis 

V - G ( r )  = - e a  dh q V S ( r  - h q ) .  Jp: 
Using the representation of the 6 function 

r + m  

S ( r  - A q )  = < J d3k exp{ik - ( r  - h q ) )  
(2v )  --OD 

we find that 

V G ( r )  = -7 ea Id; dA j-1 d3k iq * k exp(ik - ( r  - A q ) } .  
( 2 v )  p ,  
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Integrating with respect to A and reverting back to 8 notation gives 

V * C (  r )  = ae8(  r - p2q)  - ae8(  r - p lq ) .  (24) 

The vector G can be thought of as an ‘effective polarisation’, leading to a transformed 
charge density 

p’(  r )  = -ea( r - p2q)  + e8 ( r  - P , q ) .  (25) 

Thus, the gauge transformation has the effect of rescaling the charges to - a e  and +ae, 
and moving them to the positions P2q and p l q  respectively. We can also define two 
charge systems 

P l ( r )  = - e s ( r - p l q ) +  e 8 ( r )  (26) 

Pz(r) = - e 8 ( r  - P2q)  + e 8 ( r )  (27) 

with the result 

v * G ( r )  = a b 1  - P 2 ) .  

By Maxwell’s equation 

EOV * E = p  

we obtain the interesting equation 

where p is the actual charge density, defined in (4). In particular, in the PZW Hamil- 
tonian V Il = 0 and lI is identified as the displacement D. On the other hand, if a = 0 
then Il reverts back to the field E, indicating a return to the minimal-coupling regime. 

The transformed Hamiltonian exhibits a particularly interesting form when the 
dipole approximation is made. Here PI = 0, P2 = 1 and 

G ( r ,  q ) = - a e q 8 ( r ) = a P D ( r )  (31 )  

where PD( r )  is the dipole approximation polarisation. The transformed Hamiltonian 
is 

with conjugate momenta 

p = mq - (1 - a )  e A  (33) 

n = -  E ~ E  - (YP,.  (34) 

The dipole approximation dictates that A and n in equations (32)-(34) are measured 
at the coordinate origin, that is at the position of +e. In a Coulomb gauge, (32) gives 
an interaction Hamiltonian in terms of transverse vectors 

e e* a 2  
m 2m 2 EO 

H ! ~ ) = - -  ( 1  - a ) p .  A ,  +- ( 1  - a)’A:+ a e q .  E , + -  5 d3rPkL (35)  

indicating a mix of p A ,  and q E,  interactions. The interaction Hamiltonian of (35) 
leads to gauge-invariant photon transition processes; however, the multiplier a can 
be so chosen to eliminate the counter-rotating terms of a harmonic oscillator, or 
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two-state atom, coupled to a field (Baxter et a1 1989). The oscillator case has also 
been considered in a somewhat similar fashion by Drummond (1987), who diagonalised 
the minimal-coupling Hamiltonian by means of a double transformation of the annihila- 
tion and creation operators. 
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